thanks a lot it works thanks a lot it works thanks a lot it works thanks a lot it works thanks a lot it works OK So, we've created a general package for scikit-learn decision tree visualization and model interpretation, which we'll be using heavily in an upcoming machine learning book (written with Jeremy Howard). Here's a sample visualization for a tiny decision tree (click to enlarge) xample, we couldn't find a library that visualizes how decision nodes split up the feature space. It is also uncommon for libraries to support visualizing a specific feature vector as it weaves down through a tree's decision nodes; we could only find one image showing this. decision tree is a machine learning model based upon binary trees (trees with at most a left and right child). A decision tree learns the relationship between observations in a training set, represented as feature vectors x and target values y, by examining and condensing training data into a binary tree of interior nodes and leaf nodes